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Popular Summary 

Combined Lidar-Radar Remote Sensing: Initial Results from CRYSTAL-FACE 
and Implications for Future Spaceflight Missions 

M.J. McGill, L. Li, W.D. Hart, G.M. Heymsfield, 
D.L. Hlavka, M.A. Vaughan, and D.M. Winker 

In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter 

lidar and a 94-Ghz cloud profiling radar in formation to provide complete global profiling 

of cloud and aerosol properties. The Cirrus Regional Study of Tropical Anvils and Cirrus 

Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign, conducted 

during July 2002, provided the first high-altitude colocated measurements from lidar and 

cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide 

complementary measurements with varying degrees of measurement overlap. This paper 

presents initial results of the combined airborne lidar-radar measurements during 

CRSYTAL-FACE. The overlap of instrument sensitivity is presented, within the context 

of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion 

of atmospheric profiles sensed independently by each instrument and the portion sensed 

simultaneously by the two instruments. 



ABSTRACT 

In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and 

a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and 

aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, 

provided the first high-altitude colocated measurements from lidar and cloud profiling radar to 

simulate these spaceborne sensors. The lidar and radar provide complementary measurements 

with varying degrees of measurement overlap. This paper presents initial results of the 

combined airborne lidar-radar measurements during CRSYTAL-FACE. The overlap of 

instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. 

Results are presented to quantify the portion of atmospheric profiles sensed independently by 

each instrument and the portion sensed simultaneously by the two instruments. 

INTRODUCTION 

A series of satellites, flying in formation and providing synergistic data products, comprise 

NASA’s future “A-train” constellation. The A-train takes its name from the Aqua satellite 

[Parkinson, 20031, which leads the string of satellites. Following Aqua are, in order, the 

CloudSat [Stephens et al, 20021, CALIPSO [Winker et al, 20031, PARASOL carrying the 

POLDER instrument [Deschamps et al, 19941, and Aura[refl satellites. These satellites will fly 

in a 705-km sun-synchronous orbit with an equatorial crossing time of 1:30 pm. This satellite 

formation offers the opportunity to combine complementary data products to provide improved 

global remote sensing of the atmosphere. 



The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus 

Experiment (CRYSTAL-FACE) field campaign during July 2002 [Jensen et al, 20031 deployed a 

comprehensive suite of instruments on six aircraft and at two ground sites to study tropical cirrus 

cloud properties and formation processes. Instruments onboard one of the aircraft, the NASA 

ER-2, provided high-altitude downlooking measurements from several instruments that can be 

considered proxies for A-train instruments. The Cloud Physics Lidar (CPL) [McGill et al, 2002; 

McGill et al, 20031 provides measurements similar to the polarization lidar on CALIPSO, which 

operates at 532 nm and 1064 nm. The new Cloud Radar System (CRS) [Li et al, 20031 provides 

measurements similar of those of the CloudSat 94 GHz cloud profiling radar. The MODIS 

Airborne Simulator (MAS) [King et al, 19961 emulates MODIS measurements of the Aqua 

satellite. 

This work will focus on selected CPL and CRS measurements from CRYSTAL-FACE, as these 

are the first high-altitude, colocated measurements from lidar and cloud profiling radar and can 

be used to assess the utility of future data products from CALIPSO and Cloudsat. The 

combination of the two instruments, with wavelengths that differ by about three orders of 

magnitude, is necessary to obtain a complete profile of clouds and aerosols. The radar is 

insensitive to aerosols and to clouds composed of small particles, but is very sensitive to clouds 

composed of large ice crystals and can easily penetrate dense convective cloud. In contrast, lidar 

is sensitive to aerosols and to even the thinnest cloud layers, but cannot penetrate optically thick 

clouds. Because of its use of optical wavelengths, lidar is usually limited to situations where the 

integral optical depth is less than -3-4, depending on instrument parameters. Similarities and 

differences in using the two techniques to remotely sense clouds will be illustrated using data 



acquired during CRYSTAL-FACE on July 23 and July 26, 2002. The data acquired on July 23 

represent unique measurements of a developing cirrus anvil, while on July 26 primarily non- 

convective cirrus was observed. 

COMBINED LIDAR-RADAR OBSERVATIONS 

The CPL provides measurements with 30 m vertical by 1 s temporal resolution. At an average 

ER-2 ground speed of -200 m/s the corresponding horizontal resolution is approximately 200 m. 

The CRS measurements are 37.5 m vertical by 0.5 s temporal resolution. Thus, the first step in 

combining the CPL and CRS data is to match the spatial and temporal resolutions of the two data 

sets. For ease of computation, we chose to interpolate the CPL measurements to 37.5 m vertical 

resolution and to average the CRS measurements to 1 s temporal resolution. The CPL measures 

at both 532 nm and 1064 nm. However, only 532 nm data is used in this paper. The 1064 nm 

data is not much different, and either lidar wavelength is greatly separated from the millimeter 

radar wavelength . 

There are difficulties involved in combining data from lidar and radar, not the least of which is a 

fundamental difference in measured quantities. Whereas the lidar measures backscattered 

photons, or equivalently, profiles of attenuated backscatter, the radar measurement is quantified 

in terms of equivalent reflectivity. Thus, one aspect of this work is to relate the radar reflectivity 

to lidar-derived quantities such as backscatter and optical depth. A most important distinction 

between lidar and radar is the reliance on particle size distribution. Reflectivity of the 

millimeter-wave radar is proportional to the sixth power of the particle size distribution, whereas 



lidar backscatter is proportional to the second power. A comprehensive introduction to lidar and 

radar is beyond the scope of this paper, but an excellent reference (coincidentally focused on 

CloudSat and CALIPSO measurement synergy) is Okamoto et al. (2003). 

Difficulties also arise when combining data from two separate sensors. In this case, many of the 

usual problems are remedied by having both CPL and CRS onboard the same aircraft. However, 

concerns such as pointing and footprint sizes are always present. Radar beam footprints are 

usually large compared with lidar, and that is the case here as well. The CPL receiver field of 

view is 100 microradians, so the receiver footprint at 20 km is 2 m. The CRS has a pencil beam 

but aircraft motion over the averaging interval elongates the footprint; at 20 km altitude the 

footprint is approximately 200 x 280 m. Although no attempt was made to precisely co-align the 

CPL and CRS, the disparity in footprint size provides wide margin in the pointing requirement. 

The difference in footprint, however, introduces the reality that the lidar essentially subsamples 

the area sampled by the radar. Thus, small features, such as fair weather cumulus clouds with 

few hundred meter diameters, might be detected by the lidar but not by the radar. 

Initial focus for this study is the July 23 case from CRYSTAL-FACE because the ER-2 flew 8 

passes along the same coordinates. The flight track, shown in Figure 1, was chosen to follow a 

developing convective cell and was intentionally chosen in the along-wind direction. The result 

is a unique data set showing growth and decay of the cirrus anvil over the course of a nearly 4- 

hour period. This particular data set provides a good basis for combining lidar and radar data 

due to the range of conditions observed, including thick convective clouds, thin cirrus, and 

multiple cloud layering. 



The right-hand column in Figure 2 shows the CPL data from the eight flight tracks. The data are 

plotted such that the images have common latitude-longitude end points even if the data does not 

extend to the end point. By plotting the data in this manner, it is easy to see the evolution of the 

convective system on a fixed latitude-longitude grid. In addition, every other image is plotted in 

reverse of the normal time scale to allow viewing on the fixed grid. In the first image two 

neighboring convective cells are seen, with a cirrus anvil starting to form. In successive images 

the convective cells collapse and decay while the cirrus anvil spreads downstream and decays 

into a complex multi-layered structure. 

Figure 3 shows the CRS data in the left-hand column. Note the convective core is easily 

observed by the radar whereas the lidar could not penetrate far into the layer. Conversely, the 

radar is oblivious to much of the thin cirrus, even layers that are geometrically thick, which the 

lidar easily senses. This is particularly apparent in the bottom three panels of Figure 3 between 

12 km and 13.5 km, where the radar fails to detect all but a small fraction of the uppermost cirrus 

layer. The right-hand column of Figure 3 shows the combined atmosphere generated from both 

CRS and CPL data. In these images yellow shading indicates regions where only the radar 

observed layers, blue shading indicates regions where only the lidar observed layers, and green 

shading is where both instruments observed layers. Figure 3 thus provides a qualitative but 

visual overview of the instrument sensitivities and overlap between the measurements. The 

combined lidar-radar images provide a first glimpse of the future CALIPSO-CloudSat combined 

data product. 



LIDAR-RADAR OBSERVATIONS: QUANTITATIVE RESULTS 

Providing absolute comparisons of the lidar and radar measurements is difficult. A significant 

complication in comparing measurements from simple backscatter lidar and radar is that neither 

instrument is capable of directly measuring particle size and shape. Thus, there are three large 

degrees of freedom in the atmospheric particulates (particle size, particle shape, and 

concentration) that affect each instrument in different ways. In particular, lidar is sensitive to 

equivalent particle diameter squared while radar is sensitive to equivalent particle diameter to the 

sixth power. And, although lidar depolarization measurements (which are obtained by the CPL) 

might be used to aid in comparing the lidar and radar data, such measurements are not 

unambiguous, since particle size and orientation can vary independently. 

Before beginning detailed descriptions of the data, it is necessary to define some terminology. 

Because the radar signal does not incur significant attenuation and can penetrate most, if not all, 

atmospheric cloud features, the radar data can be partitioned into two basic categories: (1) that 

within layers (e.g., cloud) and (2) clear air. For this work, radar cloud boundaries were 

determined using a thresholding technique similar to that described in Uttal et al. (1993). The 

lidar signal, however, can become completely extinguished when attempting to probe a dense 

cloud, so the lidar data is best partitioned into three categories: (1) that within layers, which for 

the lidar can be cloud, elevated aerosol or planetary boundary layer, (2) clear air, and (3) totalIy 

attenuated regions (e.g., the area beneath attenuating clouds). The lidar layer boundaries were 

also determined using a thresholding technique similar to Winker and Vaughan (1994). Finally, 

in describing the lidar-derived optical depth, it is understood that the optical depth is that due to 



aerosol and cloud and does not include Rayleigh signal (e.g., is particulate rather than total 

optical depth). 

Having established definitions of layers, a description of the observations can now proceed. The 

8 flight tracks of July 23, as shown in Figures 2 and 3, consist of a total of over 5 million 

possible data elements, or data bins (533 bins per profile at a flight altitude of 20 km). The radar 

detected cloud in 21.9% of the bins and clear air in the remaining 78.1%. From examining the 

lidar profiles we found that 10.5% of the radar clear air fraction is actually not clear air but 

contains cloud that was below the radar detection threshold. The lidar detected a layer in 14.8% 

of the bins, clear air in 26.7%, and was totally attenuated in 58.6% of the bins. From examining 

the radar data, a lower bound can be determined for the actual cloud fraction contained in regions 

of lidar data that were totally attenuated. In this case, we find that 25.6% of the totally 

attenuated bins contained cloud. 

Another way to analyze the detection capability of each instrument is to examine only those data 

bins classified as being within a layer. Using just the data bins within layers, 27.3% were 

observed by only the lidar while 21.7% were detected by both lidar and radar and 51.0% were 

detected by only the radar. These statistics are summarized in Table 1. In this particular case, 

the complementary nature of the measurements is evident and there is a good degree of overlap 

between the instruments. 



Table 1: Statistics from July 23 and July 26 cases. 

total number of profiles used 

total number of possible data 
elements (bins) 

8927 13761 

5,000,719 7,373,469 

radar: % total bins with data 
in layers 

radar: % total bins in clear 
air 

lidar: % total bins with data 
in layers 

21.9% 2.5% 

78.1 % 97.5% 

14.8% 

lidar: % total bins fully 
attenuated 

7.4% 

58.6% 10.8% 

lidar: % total bins in clear 
air 

26.7% 8 1.8% 

% bins detected by lidar only 
(within layers) 

27.3% 72.4% 

% bins detected by both lidar 
and radar (within layers) 

21.7% 9.5% 

% bins detected by radar only 
(within layers) 

5 1 .O% 18.2% 

To quantify the lidar-radar vertical overlap, two particular profiles were selected from the third 

image segment in Figure 3 (indicated by vertical red lines on the image). Figure 4 shows a 

profile from 20:38:20 UTC, for a case where a transmissive cirrus cloud is found. In this 

example, the lidar detects two separate cirrus layers and penetrates through both (ground return 

is observed beneath). The radar does not detect the top cirrus layer, but does detect the lower 

portion of the second layer. The lidar cumulative aerosol optical depth reaches 0.25 before the 



radar begins to detect signal at its lowest sensitivity. Figure 5 shows a profile from 20:50:50 

UTC, but in this example the lidar signal is quickly attenuated by the dense clouds. Although the 

lidar detects the cirrus top before the radar does, the lidar signal is fully extinguished by 13 km. 

The lidar cumulative aerosol optical depth has reached 0.15 before the radar signature begins. 

Figures 4 and 5 illustrate the complementary nature of the lidar and radar measurements, with the 

radar penetrating where the lidar cannot and the lidar sensitivity permitting observation of thin 

cirrus invisible to the radar. 

Analysis of many such profiles permits development of a relationship between lidar optical depth 

and radar minimum reflectivity. Figure 6 shows relationship between the topmost layer 

boundary determined from the radar and lidar data. In general the lidar detects the topmost layer 

boundary (i.e., that closest to the aircraft) before the radar does, in many cases more than 1 km 

higher. Thus, there is often a region of cirrus, which can be geometrically thick, that is 

undetected by the radar. Because such cirrus are radiatively significant,[McFarquhar et al. 20001 

the combination of lidar and radar is effective in providing more complete knowledge of the 

atmospheric column than either instrument alone. Figure 7 is a scatterplot illustrating the 

relationship between reflectivity and cumulative particulate optical depth. It is apparent that the 

CRS has a minimum sensitivity of --29 dBZ and there is a large amount of scatter owing to large 

variability in the ice particle characteristics. Figure 8 shows the fraction of occurrences of the 

lidar cumulative particulate optical depth not seen by the radar. In general, the radar does not 

start to detect a layer until the lidar cumulative particulate optical depth reaches 0.3-0.4. 



It is illuminating to plot the lidar data as a distribution of the observed backscatter coefficient, as 

shown in Figure 9. Because most of the layers observed are cloud as opposed to elevated 

aerosol, the histogram skews to higher backscatter coefficients. Overplotted in gray is the subset 

of lidar backscatter coefficients in regions sensed by both the lidar and the radar. Clearly the 

radar is most effective in regions with backscatter coefficient greater than m-' sr -'. Figure 

10 is the subset of lidar backscatter coefficients, but only in layers that the radar did not detect, 

plotted as the fraction of occurrences missed by the radar. Figure 10 demonstrates that the radar 

is good at detecting layers with large backscatter coefficient m-' sr") but the lidar is 

necessary to detect regions with lower backscatter coefficient. 

The case from July 23 is obviously specific to cirrus anvils in a tropical tropopause region. It is 

therefore not possible to make generic statements about the fractional overlap of the lidar and 

radar measurements for other cloud situations. To emphasize this point, data from July 26 were 

analyzed in the same manner as July 23. The July 26 flight was a long excursion south to 14 

degrees North latitude, as shown in Figure 1 1 .  A composite lidar-radar image, similar to the 

right-hand column of Figure 3, is shown in Figure 12. The lidar detects a thick, extensive cirrus 

layer as well as elevated Saharan dust above the marine boundary layer. Note the lack of CRS 

data, even over the geometrically thick cirrus at the southern end of the flight track. In regions 

that CRS does not detect, CPL estimates of cirrus optical depth are in the range 0.35-0.45 (+/- 

0.14) for this cirrus cloud, in line with the CRS detection threshold of 0.3-0.4 determined from 

the July 23 case. This provides an interesting contrast, because the cirrus anvils from July 23 

were comprised of large aggregate ice clusters (as measured by in situ sensors) while the benign 

synoptic cirrus seen on July 26 is likely comprised of smaller and more geometrically idealized 



particles. We may conclude, then, that while the type of cirrus cloud (e.g., particle size and 

shape) between the two cases is likely quite different, the end result for minimum radar detection 

is unchanged. 

The July 26 data show a definite difference in distribution compared to the July 23 data. Figure 

13 shows the comparison of topmost layer boundary (c.f. Figure 6). Figure 14 gives the relation 

between reflectivity and lidar-derived cumulative particulate optical depth (c.f. Figure 7). The 

difference is also reflected in the statistics given in Table 1 ,  where the number of data bins within 

layers detected by the lidar only is more than double that of the July 23 case. A further 

illustration of the difference between the two cases is shown in Figure 15, which shows the 

distribution of CRS reflectivity for July 23 and July 26. In the July 23 case, as seen in Figure 3, 

there i s  cirrus but also considerable convective cloud. The July 26 case (recall Figure 12) is 

primarily cirrus with some convective cloud and this fact is evidenced by the reflectivity being 

clustered in the -20 to -30 .dBZ range. For comparison, histograms of the lidar backscatter and 

that undetected by the radar are shown in Figures 16 and 17 (c.f. Figures 9 and 10). It appears in 

Figure 17 that the radar misses a large fraction of areas having high backscatter coefficient, but 

this is merely a reflection of the small number of occurrences (see Figure 16 for context). 

CONCLUSIONS 

The CRYSTAL-FACE field campaign provided the first high-altitude colocated measurements 

from lidar and cloud profiling radar. Initial results of the combined lidar-radar measurements 

were shown, illustrating the complementary nature of the two instruments. Statistics derived 



from the measurements demonstrate the sensitivity of each instrument and the region of 

detection overlap between the instruments. The radar reflectivity was related to lidar-derived 

parameters such as optical depth. It was determined that cirrus cloud with optical depth <4 .4  is 

infrequently observed by the radar, but these radiatively significant clouds are easily profiled 

with the lidar. In contrast, optically thick clouds and convective cores are highly attenuating to 

lidar but are easily probed with the radar. 

Most of the CRYSTAL-FACE flights were focused on convective systems and cirrus anvils. 

There was, however, one long flight that did not target convective systems. To capture some 

element of varying atmospheric characteristics, two cases were analyzed, one with convective 

systems and cirrus anvils and one having synoptic cirrus and considerable clear air. The two 

cases show quite different results, primarily due to differences in cloud distributions but also 

presumably because the ice hydrometeors have different characteristics. It follows that the best 

instrument for providing a complete profile of atmospheric clouds and aerosols is not a lidar or a 

radar, but a combination of both sensors. The combination of CPL and CRS measurements from 

CRYSTAL-FACE gives a first glimpse of the combined data product from the future CALIPSO 

and CloudSat missions and provides a clear indicator of the data synergy that exists between 

these two remote sensing methods. 
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FIGURE CAPTIONS 



Figure 1: ER-2 flight track for July 23,2002. Segments drawn in green are the segments shown 
in Figures 2 and 3. 



Figure 2: Left-hand column shows ER-2 flight track for each image. Arrows indicate direction 
of travel. Right-hand column shows profiles of CPL 532 nm attenuated backscatter coefficient. 
Each image is the same length and covers the same (latitude, longitude) interval. Note that data 
from westbound flight legs (images 2,4,6,8) has been reversed to allow direct comparison with 
the eastbound flight legs. Plotted in this manner, it is easy to see evolution of the convective 
system and anvil in a fixed coordinate system 



CRS reflectivity proflks CPL + CRS comhined proflles 
1 - 

Figure 3: Left-hand column shows profiles of CRS reflectivity. The radar easily penetrates 
thick clouds but is insensitive to overlying cirrus. Right-hand column is the combined lidar and 
radar image. Blue color shading indicates regions where only CPL detected layers. Yellow 
color shading indicates regions where only CRS detected layers. Green shading indicates 
regions where both CRS and CPL detected layers (e.g., the instrument overlap). These plots 
show cloud/aerosol layers only (e.g., background atmosphere is removed from the lidar data). 



CPL Backscatter Coefficient (m-l sr-') 

Figure 4: Profiles from 20:30:20 UTC, July 23, 2002. Solid black line is the CRS radar 
reflectivity. Light gray dashed line is the CPL lidar attenuated backscatter profile. Dark gray 
solid line is CPL backscatter coefficient, and gray dashed line is the lidar-derived cumulative 
particulate optical depth. 
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Figure 5: Profiles from 20:50:48 UTC, July 23,2002. Solid black line is the CRS radar 
reflectivity. Light gray dashed line is the CPL lidar attenuated backscatter profile. Dark gray 
solid line is CPL backscatter coefficient, and gray dashed line is the lidar-derived cumulative 
particulate optical depth 
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Figure 6: Comparison of topmost layer height, from July 23,2002. The lidar consistently 
detects layer boundaries before the radar. 
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Figure 7: Scatterplot of radar reflectivity versus lidar-derived cumulative particulate optical 
depth, for July 23,2002. Gray line overplotted is the best fit (x') to the data. 
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Figure 8: Occurrences of cumulative particulate optical depth derived from lidar measurements. 
Gray histogram shows all optical depths missed by the radar (e.g. optical depth down to the first 
detected radar bin). Overplotted in black is the optical depth missed when the radar senses 
nothing in an entire profile. In general, the lidar cumulative optical depth has to reach -0.3 
before the radar begins to detect signal. 
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Figure 9: Distribution of backscatter coefficients from all lidar measurements within layers 
(black histogram). From July 23, 2002 data. Overplotted in gray is the subset detected by the 
lidar in  regions where there was also valid radar signature (i.e., the instrument overlap). 
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Figure 10: Distribution of backscatter coefficients from lidar in regions where the radar did not 
detect valid signal, July 23,2002. This is a distribution of backscatter effectively missed by the 
radar, plotted as fraction of occurrences missed by the radar. 



Figure 11: ER-2 flight track for July 26,2002. 
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Figure 12: Composite image for July 26,2002. Only the middle half of the flight is shown, as 
there was no radar signature in the early and later portions of the flight. The black region masks 
a 180-degree turn at the southern end of the flight track. Regions shaded in blue indicate lidar 
detection only, yellow indicates radar detection only, and green indicates both. Note that unlike 
the July 23 case, there is less overlap of the instruments in this example. 
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Figure 13: Comparison of topmost layer height, from July 26,2002. Compare with Figure 6 for 
July 23. 
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Figure 14: Occurrences of cumulative particulate optical depth derived from lidar 
measurements, July 26, 2002. Gray histogram shows all optical depths missed by the radar (e.g. 
optical depth down to the first detected radar bin). Overplotted in black is the optical depth 
missed when the radar senses nothing in an entire profile. Compare with Figure 8 for July 23. 



. . . . . "  ' . I . . . . . . . . . , . . " . . . . . 1 " . . . . . . . , ' . ' . . ' " '  

*, 
0 

-30 -20 -10 0 10 20 
CRS reflectivity (dBZe) 

2.5 

2.0 

1.5 

1.0 

0.5 

0 
-30 -20 -10 0 10 20 

CRS reflectivity (dJ3Ze) 

Figure 15: (top) Distribution of CRS radar reflectivity for July 23,2002. (bottom) Same, for 
July 26, 2002. In each case, the gray histogram is all bins detected by the radar (including 
regions also sensed by the lidar). Overplotted in black is the subset of bins from regions where 
only the radar detected valid layer signature. 



cr 
0 

3 
B 
1 

k 
H 

8 

6 

4 

2 

0 
1 0 8  1 0 7  10-6 1 0 5  104 10-3 10-2 

Backscatter coefficient (m-l sr'l) 

Figure 16: Distribution of backscatter coefficients from all lidar measurements within layers 
(black histogram). From July 26, 2002 data. Overplotted in gray is the subset detected by the 
lidar in  regions where there was also valid radar signature (Le.* the instrument overlap). 
Compare with Figure 9 for July 23. 
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Figure 17: Distribution of backscatter coefficients from lidar in regions where the radar did not 
detect valid signal, July 26, 2002. This is a distribution of backscatter effectively missed by the 
radar, plotted as fraction of occurrences missed by the radar. Compare with Figure 10 for July 
23. 


